Structural aspects for evolution of beta-lactamases from penicillin-binding proteins.
نویسندگان
چکیده
Penicillin-binding proteins (PBPs), biosynthetic enzymes of bacterial cell wall assembly, and beta-lactamases, resistance enzymes to beta-lactam antibiotics, are related to each other from an evolutionary point of view. Massova and Mobashery (Antimicrob. Agents Chemother. 1998, 42, 1-17) have proposed that for beta-lactamases to have become effective at their function as antibiotic resistance enzymes, they would have had to undergo structure alterations such that they would not interact with the peptidoglycan, which is the substrate for PBPs. A cephalosporin analogue, 7beta-[N-Acetyl-L-alanyl-gamma-D-glutamyl-L-lysine]-3-acetoxymethyl-3-cephem-carboxylic acid (compound 6), was conceived and synthesized to test this notion. The X-ray structure of the complex of this cephalosporin bound to the active site of the deacylation-deficient Q120L/Y150E variant of the class C AmpC beta-lactamase from Escherichia coli was solved at 1.71 A resolution. This complex revealed that the surface for interaction with the strand of peptidoglycan that acylates the active site, which is present in PBPs, is absent in the -lactamase active site. Furthermore, insertion of a peptide in the beta-lactamase active site at a location where the second strand of peptidoglycan in some PBPs binds has effectively abolished the possibility for such interaction with the beta-lactamase. A 2.6 ns dynamics simulation was carried out for the complex, which revealed that the peptidoglycan surrogate (i.e., the active-site-bound ligand) undergoes substantial motion and is not stabilized for binding within the active site. These factors taken together disclose the set of structure modifications in the antibiotic resistance enzyme that prevent it from interacting with the peptidoglycan, en route to achieving catalytic proficiency for their intended function.
منابع مشابه
Cytoplasmic-membrane anchoring of a class A beta-lactamase and its capacity in manifesting antibiotic resistance.
Bacterial beta-lactamases are the major causes of resistance to beta-lactam antibiotics. Three classes of these enzymes are believed to have evolved from ancestral penicillin-binding proteins (PBPs), enzymes responsible for bacterial cell wall biosynthesis. Both beta-lactamases and PBPs are able to efficiently form acyl-enzyme species with beta-lactam antibiotics. In contrast to beta-lactamases...
متن کاملStructure of PBP-A from Thermosynechococcus elongatus, a penicillin-binding protein closely related to class A beta-lactamases.
Molecular evolution has always been a subject of discussions, and researchers are interested in understanding how proteins with similar scaffolds can catalyze different reactions. In the superfamily of serine penicillin-recognizing enzymes, D-alanyl-D-alanine peptidases and beta-lactamases are phylogenetically linked but feature large differences of reactivity towards their respective substrate...
متن کاملRU 29 246, the active compound of the cephalosporin-prodrug-ester HR 916. II. Stability to beta-lactamases and affinity for penicillin-binding proteins.
The aminothiazolyl-cephalosporin RU 29 246, the active metabolite of the prodrug-ester HR 916, is active against strains producing the widespread plasmid-encoded TEM-1, TEM-2 and SHV-1 beta-lactamases. Except for TEM-7 the activity of RU 29 246 against strains producing extended broad spectrum beta-lactamases (TEM-3, TEM-5, TEM-6, SHV-2, SHV-4, SHV-5, CMY-1, CTX-M), however, is low. Relative hy...
متن کاملStructural basis of the inhibition of class A beta-lactamases and penicillin-binding proteins by 6-beta-iodopenicillanate.
6-Beta-halogenopenicillanates are powerful, irreversible inhibitors of various beta-lactamases and penicillin-binding proteins. Upon acylation of these enzymes, the inhibitors are thought to undergo a structural rearrangement associated with the departure of the iodide and formation of a dihydrothiazine ring, but, to date, no structural evidence has proven this. 6-Beta-iodopenicillanic acid (BI...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 125 32 شماره
صفحات -
تاریخ انتشار 2003